185,46 €
218,19 €
-15% su kodu: ENG15
Algebraic Geometry 3
Algebraic Geometry 3
185,46 €
218,19 €
  • Išsiųsime per 10–14 d.d.
Starting with the end of the seventeenth century, one of the most interesting directions in mathematics (attracting the attention as J. Bernoulli, Euler, Jacobi, Legendre, Abel, among others) has been the study of integrals of the form r dz l Aw(T) = -, TO W where w is an algebraic function of z. Such integrals are now called abelian. Let us examine the simplest instance of an abelian integral, one where w is defined by the polynomial equation (1) where the polynomial on the right hand side has…
185.46 2025-09-21 23:59:00
  • Leidėjas:
  • Metai: 1997
  • Puslapiai: 270
  • ISBN-10: 3540546812
  • ISBN-13: 9783540546818
  • Formatas: 15.9 x 24.1 x 1.9 cm, kieti viršeliai
  • Kalba: Anglų
  • Extra -15 % nuolaida šiai knygai su kodu: ENG15

Algebraic Geometry 3 (el. knyga) (skaityta knyga) | knygos.lt

Atsiliepimai

(4.00 Goodreads įvertinimas)

Aprašymas

Starting with the end of the seventeenth century, one of the most interesting directions in mathematics (attracting the attention as J. Bernoulli, Euler, Jacobi, Legendre, Abel, among others) has been the study of integrals of the form r dz l Aw(T) = -, TO W where w is an algebraic function of z. Such integrals are now called abelian. Let us examine the simplest instance of an abelian integral, one where w is defined by the polynomial equation (1) where the polynomial on the right hand side has no multiple roots. In this case the function Aw is called an elliptic integral. The value of Aw is determined up to mv + nv, where v and v are complex numbers, and m and n are 1 2 1 2 integers. The set of linear combinations mv+ nv forms a lattice H C C, and 1 2 so to each elliptic integral Aw we can associate the torus C/ H. 2 On the other hand, equation (1) defines a curve in the affine plane C = 2 2 {(z, w)}. Let us complete C2 to the projective plane lP' = lP' (C) by the addition of the "line at infinity," and let us also complete the curve defined 2 by equation (1). The result will be a nonsingular closed curve E C lP' (which can also be viewed as a Riemann surface). Such a curve is called an elliptic curve.

EXTRA 15 % nuolaida su kodu: ENG15

185,46 €
218,19 €
Išsiųsime per 10–14 d.d.

Akcija baigiasi už 6d.13:21:05

Nuolaidos kodas galioja perkant nuo 10 €. Nuolaidos nesumuojamos.

Prisijunkite ir už šią prekę
gausite 2,18 Knygų Eurų!?
Įsigykite dovanų kuponą
Daugiau

Starting with the end of the seventeenth century, one of the most interesting directions in mathematics (attracting the attention as J. Bernoulli, Euler, Jacobi, Legendre, Abel, among others) has been the study of integrals of the form r dz l Aw(T) = -, TO W where w is an algebraic function of z. Such integrals are now called abelian. Let us examine the simplest instance of an abelian integral, one where w is defined by the polynomial equation (1) where the polynomial on the right hand side has no multiple roots. In this case the function Aw is called an elliptic integral. The value of Aw is determined up to mv + nv, where v and v are complex numbers, and m and n are 1 2 1 2 integers. The set of linear combinations mv+ nv forms a lattice H C C, and 1 2 so to each elliptic integral Aw we can associate the torus C/ H. 2 On the other hand, equation (1) defines a curve in the affine plane C = 2 2 {(z, w)}. Let us complete C2 to the projective plane lP' = lP' (C) by the addition of the "line at infinity," and let us also complete the curve defined 2 by equation (1). The result will be a nonsingular closed curve E C lP' (which can also be viewed as a Riemann surface). Such a curve is called an elliptic curve.

Atsiliepimai

  • Atsiliepimų nėra
0 pirkėjai įvertino šią prekę.
5
0%
4
0%
3
0%
2
0%
1
0%
(rodomas nebus)